
Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Quick Response Code Access this article online

Website:

www.actaelectronicamalaysia.com

DOI:

10.26480/mecj.01.2022.16.23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in
Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

ISSN: 2590-4043
CODEN: AEMCDV

RESEARCH ARTICLE

Acta Electronica Malaysia (AEM)

DOI: http://doi.org/10.26480/aem.01.2022.16.23

EVALUATING THE IMPACT OF ONLINE CODING PLATFORMS ON PROGRAMMING
SKILL ACQUISITION IN SECONDARY AND TERTIARY EDUCATION

Israel Gracea, Onum Friday Okohb*

a Department of Computer Science, Kogi State University, Anyigba, Kogi State, Nigeria.
b Department of Education and Economics, Kogi State University, Anyigba, Kogi State, Nigeria.
*Corresponding Author Email: onumfridayokoh@gmail.com

This is an open access journal distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited

ARTICLE DETAILS ABSTRACT

Article History:

Received 23 April 2022
Revised 20 June 2022
Accepted 27 June 2022
Available online 25 July 2022

The rapid integration of digital learning tools into education has reshaped the landscape of skill acquisition,
particularly in the field of computer science. This study evaluates the impact of online coding platforms such
as Codecademy, HackerRank, and freeCodeCamp on programming skill development among students in
secondary and tertiary institutions. As programming becomes increasingly central to modern economies and
digital innovation, equipping learners with effective, accessible, and scalable tools for acquiring coding skills
is essential. Online coding platforms offer interactive learning environments that combine self-paced
instruction, gamified challenges, real-time feedback, and community engagement. These features have the
potential to complement or even surpass traditional classroom-based approaches by enhancing student
motivation, improving conceptual understanding, and encouraging independent problem-solving. This paper
explores how such platforms influence students’ ability to grasp core programming concepts, retain
knowledge, and apply their skills in practical contexts. Particular attention is given to differences in impact
across educational levels and socio-economic contexts. The findings offer valuable insights into the role of
digital platforms in democratizing access to programming education and preparing students for careers in
technology. Ultimately, this evaluation contributes to a broader understanding of how educational technology
can bridge skill gaps and support national strategies for digital literacy and workforce development.

KEYWORDS

Online coding platforms, programming education, skill acquisition, secondary education, tertiary education.

1. INTRODUCTION

1.1 Background of Programming Education in the Digital Era

The evolution of programming education has been significantly influenced
by the rise of digital technologies and the demand for computational
literacy across academic and professional domains. As coding becomes a
foundational skill in the 21st-century knowledge economy, education
systems are increasingly recognizing the necessity of early and sustained
exposure to programming. According to the study, computational thinking
and programming are now essential cognitive competencies, akin to
reading and mathematics, enabling students to approach problem-solving
in algorithmic and data-driven ways (Grover and Pea, 2018). This
paradigm shift has led to a global expansion of curriculum reforms in
secondary and tertiary education that prioritize the integration of
computer science and digital learning tools. The digital era not only
redefines what students learn but also how they learn, introducing
immersive, interactive environments that reshape pedagogical strategies
and learner engagement.

Moreover, traditional classroom instruction in programming has been
complemented—and in many cases, challenged by the increasing adoption
of online coding platforms. Itemphasize that these tools, when
thoughtfully implemented, foster student-centered learning and offer
differentiated pathways for skill acquisition (Waite et al., 2020). Through
platforms such as Scratch, Repl.it, or PythonAnywhere, students can
practice real-world programming logic, build projects iteratively, and
receive immediate feedback, thus enhancing both autonomy and technical
proficiency.

1.2 Importance of Skill Acquisition in Secondary and Tertiary
Institutions

In today’s increasingly digitized society, the cultivation of programming
skills in secondary and tertiary education systems is not merely an
academic enhancement but a national developmental imperative. Argue
that programming and computational thinking are essential for preparing
students to engage with the complexities of a digitally transformed labor
market (Bocconi et al., 2018). In secondary institutions, skill acquisition
through coding enables early cognitive modeling of abstract and logical
problem-solving frameworks, fostering critical thinking, resilience, and
digital fluency. For example, integrating structured programming
exercises in secondary school curricula allows students to visualize
algorithmic processes, which in turn supports knowledge retention and
the ability to navigate digital technologies across disciplines.

At the tertiary level, programming competence becomes instrumental in
advancing innovation, interdisciplinary research, and employment
readiness. As highlight, computational skills are linked to increased
academic achievement in STEM fields and broader analytical capacity
across social sciences and humanities (Tang et al., 2020). Universities are
thus embracing coding platforms not just as supplementary tools but as
integral components of pedagogical ecosystems. These platforms facilitate
self-directed learning, simulate professional environments, and offer
scalable solutions for diverse learner populations, aligning educational
outcomes with workforce expectations and global digital standards.

1.3 Purpose and Significance of Evaluating Online Coding Platforms

The purpose of evaluating online coding platforms is to determine their

mailto:onumfridayokoh@gmail.com

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

effectiveness in enhancing programming education and supporting digital
skill acquisition among students in secondary and tertiary institutions. As
the demand for coding proficiency continues to grow across various
academic disciplines and professional sectors, it becomes increasingly
important to assess whether these platforms can meet diverse learning
needs, adapt to various educational environments, and support
curriculum goals. Evaluation helps uncover how features such as
interactive coding environments, real-time feedback, gamification, and
community collaboration contribute to learners’ engagement,
comprehension, and long-term retention of programming concepts.

The significance of this evaluation lies In its potential to influence
educational policy, curriculum development, and instructional practices.
By understanding which platforms are most effective, educators and
institutions can make informed decisions about integrating digital tools
into their teaching strategies. Additionally, evaluation reveals whether
these platforms bridge skill gaps, promote inclusion, and provide
equitable access to quality programming instruction regardless of
socioeconomic background. Ultimately, a thorough evaluation of online
coding platforms supports the broader goals of fostering computational
thinking, preparing students for technology-driven careers, and aligning
educational outcomes with global digital literacy standards.

1.4 Structure of the Paper

This paper is organized into seven key sections to provide a
comprehensive evaluation of the impact of online coding platforms on
programming skill acquisition in secondary and tertiary education.
Section One introduces the study by outlining the background, importance
of skill acquisition, and the rationale for evaluating coding platforms.
Section Two explores the conceptual framework, defining online coding
platforms and the theoretical underpinnings of digital skill development.
Section Three examines the instructional features of these platforms,
including gamification, feedback systems, and personalized learning
paths. Section Four analyzes the effects on learning outcomes such as
knowledge retention, problem-solving, and student motivation. Section
Five investigates the moderating role of demographic and contextual
variables, including education level, socio-economic background, and
regional access. Section Six focuses on implementation issues, discussing
curriculum integration, teacher preparedness, and alignment with
national digital literacy policies. Finally, Section Seven summarizes the key
findings, highlights study limitations, and provides recommendations for
future research and policy enhancement.

2. CONCEPTUAL FRAMEWORK

2.1 Definition and Characteristics of Online Coding Platforms

Online coding platforms are web-based, interactive learning
environments designed to teach programming skills through a
combination of instructional content, practice exercises, coding
challenges, and automated feedback systems. These platforms are
purpose-built to simulate integrated development environments (IDEs)
while offering additional pedagogical features such as tutorials, step-by-
step guidance, and embedded hints. According to the study as presented
in figure 1, they promote self-paced learning by adapting to individual
progress, thereby supporting diverse learning styles and competencies
(Pérez-Mateo et al., 2020). Notable examples include Codecademy,
LeetCode, and Code.org, which have become instrumental in teaching both
introductory and advanced programming concepts across educational
levels.

These platforms are characterized by their interactivity, accessibility,
scalability, and emphasis on learner autonomy. As highlight that one
defining feature of online coding environments is their ability to offer real-
time feedback, allowing learners to correct errors and improve logic
without instructor intervention (Lin and Atkinson, 2015). They also often
include gamified elements such as progress tracking, badges, and
leaderboards to enhance motivation and sustained engagement. In
addition, many platforms provide collaborative features, such as
discussion forums and peer review systems, to encourage social learning
and community-based problem-solving an essential component in
modern computer science education.

Figure 1 Online coding platforms, as illustrated in the image, are digital
environments designed to help users develop and refine their
programming skills through structured challenges, tutorials, and
community engagement. These platforms such as HackerRank, LeetCode,
and Codeforces exemplify the core characteristics of accessibility,
interactivity, and gamification. They support a wide range of programming
languages and skill levels, offering real-world problem-solving scenarios
and competitive coding events like Google Code Jam. The inclusion of
leaderboards, badges, and peer forums fosters motivation and
collaboration, making these platforms essential tools for both novice
learners and seasoned developers aiming to stay sharp in a fast-evolving
tech landscape.

Figure 1: Picture of Gamified Learning on Online Coding Platforms (Pérez-Mateo et al., 2020).

2.2 Theoretical Basis for Digital Skill Acquisition

Digital skill acquisition is grounded in socio-constructivist learning
theories, which emphasize the role of interaction, context, and
engagement with digital tools as integral to the learning process. As digital
technologies reshape educational landscapes, learners must acquire
competencies that extend beyond operational use to include cognitive,
ethical, and collaborative dimensions of digital interaction. As represented
in table 1 outlines the DigCompEdu framework, which positions digital
competence as a multidimensional construct involving information
literacy, content creation, communication, and problem-solving
(Redecker, 2017). Online coding platforms serve as dynamic
environments that operationalize these theoretical principles by enabling
learners to construct meaning through experimentation, iteration, and

peer interaction.

Furthermore, the acquisition of digital skills aligns with the broader
conceptualization of 21st-century competencies. As argue that digital
literacy, creativity, critical thinking, and collaboration are interdependent
components essential for navigating the knowledge economy (Binkley et
al., 2012). Within this framework, online coding environments act as both
content delivery systems and skill incubators, allowing students to engage
in authentic problem-solving and adaptively apply knowledge. By
supporting experiential and project-based learning, these platforms
reflect a theoretical commitment to learner-centered pedagogy and the
practical application of cognitive and technical skills in digitally mediated
contexts.

Table 1: Summary of Theoretical Basis for Digital Skill Acquisition

Theory/Model Key Concepts
Application in Digital Skill

Acquisition
Examples of Use in Coding

Education

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

Table 1 (cont): Summary of Theoretical Basis for Digital Skill Acquisition

Constructivism (Piaget, Vygotsky)
Learning as an active,

contextualized process of
constructing knowledge

Encourages learners to explore,
experiment, and build mental

models through coding

Block-based platforms like
Scratch allow discovery-based

programming

Cognitive Load Theory (Sweller)
Human working memory has
limited capacity; instructional
design must reduce overload

Helps design user interfaces that
scaffold learning in manageable

segments

Use of tutorials, tooltips, and
stepwise challenges in platforms

like Codecademy

Experiential Learning (Kolb)
Learning is most effective through

experience, reflection, and
application

Promotes hands-on programming
practice and iterative problem-

solving

Real-time coding environments
like Replit foster trial-and-error

learning

Self-Determination Theory (Deci
and Ryan)

Motivation is driven by autonomy,
competence, and relatedness

Supports the design of
personalized, goal-oriented

learning experiences

Personalized paths and
gamification in Code.org to boost

intrinsic motivation

2.3 Comparative Overview of Traditional vs. Digital Programming
Education

Traditional programming education has long relied on instructor-led
lectures, textbook theory, and the use of desktop-based integrated
development environments (IDEs) in controlled classroom settings. While
effective in delivering foundational concepts, this approach often presents
steep learning curves, limited interactivity, and delayed feedback
mechanisms. They explain that such rigidity can overwhelm novice
learners, particularly when abstract syntax is introduced without
contextual grounding (Kelleher and Pausch, 2005). Moreover, access to
physical resources and instructors constrains scalability, especially in
underserved or resource-limited educational systems.

In contrast, digital programming education facilitated through online
platforms offers flexible, interactive, and learner-centered alternatives.
These platforms, such as Replit, CodeCombat, and CodeHS, integrate
multimedia tutorials, gamification, and instant feedback to enhance
engagement and understanding. According to the study, digital tools have
shown promise in reducing early-stage failure rates by allowing students
to experiment and correct errors in real time (Watson and Li, 2014).
Unlike traditional methods, digital platforms also support asynchronous
learning, enabling students to learn at their own pace and revisit complex
concepts. This comparative analysis underscores the growing relevance of
digital environments in overcoming the pedagogical limitations of
conventional programming instruction and advancing scalable, inclusive
computer science education.

3. FEATURES AND PEDAGOGICAL VALUE OF ONLINE PLATFORMS

3.1 Interactive Learning and Gamification in Coding Platforms

Interactive learning and gamification have become defining features of
modern online coding platforms, offering learners a more dynamic,
responsive, and motivational approach to programming education. These
platforms incorporate game-based mechanics such as point systems, level
progression, timed challenges, and immediate feedback loops to
encourage active participation and sustained attention. As observed that
the integration of gamified elements significantly boosts student
motivation and improves learning outcomes, particularly for IT students
who benefit from challenge-based problem-solving and instant validation
of their efforts (Barna and Fodor, 2018). For example, platforms like
CodeCombat and Grasshopper transform coding syntax into quests and
puzzles that simulate real-world logic in an engaging format.

Beyond entertainment, gamification is strategically aligned with
pedagogical principles that emphasize mastery, incremental difficulty, and
reward-driven reinforcement. Assert that gamified coding environments

stimulate cognitive engagement and perseverance by breaking complex
programming tasks into manageable, rewarding segments (Dicheva et al.,
2015). Interactive exercises often include syntax highlighting, drag-and-
drop code blocks, and virtual tutors that allow learners to visualize
programming logic in real-time. These elements not only make learning
more accessible to beginners but also foster deeper retention and
conceptual transfer, positioning gamification as a powerful educational
tool in digital programming instruction.

3.2 Role of Real-Time Feedback and Community Support

Real-time feedback is a cornerstone feature of online coding platforms,
offering immediate responses to learners’ code submissions, which
facilitates rapid error correction and iterative learning. This immediate
interaction with the learning material enhances engagement and
accelerates comprehension by allowing students to identify and fix
syntactical or logical mistakes at the moment they occur. As presented in
figure 2 highlight the cognitive benefits of immediate feedback, noting that
it reduces frustration and cognitive overload often associated with
delayed instructor responses in traditional classrooms (Kelleher and
Pausch, 2007). Platforms like Codecademy and freeCodeCamp leverage
automatic assessment tools that guide learners through progressively
challenging tasks, reinforcing mastery through just-in-time scaffolding.

Complementing this is the value of community support embedded in most
modern coding environments. Forums, peer discussion threads,
collaborative debugging spaces, and mentorship networks form a critical
ecosystem that promotes social learning and collective problem-solving.
As emphasize that these community-driven components not only provide
emotional encouragement but also expose learners to diverse problem-
solving strategies and coding paradigms (Wang and Tahir, 2020). Whether
through peer code review, group challenges, or question-and-answer
formats, community support plays a significant role in maintaining learner
motivation, persistence, and knowledge transfer within digital
programming platforms.

Figure 2 highlights the interconnected nature of technology through the
Internet of Things (IoT), which mirrors the role of real-time feedback and
community support in online coding platforms. Just as IoT devices
communicate instantly to optimize performance, coding platforms
provide immediate feedback on code submissions, helping users learn
from mistakes and improve their skills efficiently. Moreover, the
surrounding icons symbolize a network of support—akin to the vibrant
communities on these platforms where users share solutions, offer advice,
and collaborate on challenges. This synergy of and peer interaction
accelerates learning and fosters a sense of belonging among coders
worldwide.

Figure 2: Picture of Real-Time Feedback and Community: The Heart of Online Coding Platforms (Kelleher and Pausch, 2007)

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

3.3 Customization and Self-Paced Learning Opportunities

Customization and self-paced learning are key advantages of online coding
platforms, enabling learners to navigate programming content based on
their individual skill levels, learning speed, and interests. Adaptive
learning technologies utilize user modeling techniques to tailor
educational content dynamically, enhancing cognitive alignment and
motivation. As represented in table 2 explain that such systems adjust
learning pathways by analyzing user interactions, performance patterns,
and preferences, thereby offering differentiated experiences for novices
and advanced coders alike (Brusilovsky and Millán, 2007). Platforms such
as edX, SoloLearn, and DataCamp provide structured modules with
optional challenges, interactive hints, and personalized assessments that

evolve according to the learner’s progression.

Self-paced learning further empowers students by reducing the pressure
of synchronous classroom settings and promoting autonomy over the
learning process. As demonstrate that students who engage in
personalized programming paths exhibit greater retention, deeper
understanding, and higher completion rates (Chen and Tseng, 2012).
These environments support flexible scheduling and allow learners to
revisit complex topics, skip redundant exercises, or accelerate through
familiar material. This mode of learning is especially beneficial for diverse
student populations, including part-time learners, working adults, and
those from varied educational backgrounds, underscoring its significance
in democratizing access to programming education.

Table 2: Summary of Customization and Self-Paced Learning Opportunities

Feature Description Benefits to Learners Examples in Coding Platforms

Personalized Learning Paths
Users can choose topics and

progress levels based on their
skills and interests

Increases relevance and
engagement; accommodates prior

knowledge and goals

Codecademy offers career-specific
paths like "Full-Stack Engineer"

Adaptive Difficulty
Tasks adjust in complexity based

on learner performance
Enhances mastery by reducing

frustration or boredom

Khan Academy adjusts coding
challenges in response to

performance

Flexible Time Management
Learners progress at their own

pace without fixed schedules
Supports different learning speeds

and life constraints

FreeCodeCamp allows users to pause,
revisit, and complete modules

anytime

Progress Tracking and
Dashboards

Visual indicators show learner
achievements and areas needing

improvement

Encourages self-regulation,
reflection, and goal-setting

Platforms like SoloLearn offer XP
points, badges, and course progress

bars

4. IMPACT ON PROGRAMMING SKILL ACQUISITION

4.1 Conceptual Understanding and Knowledge Retention

Achieving conceptual understanding in programming requires learners to
move beyond syntax memorization and develop an internal model of how
code behaves and executes. As represented in table 3 argue that
programming is fundamentally a problem-solving activity that depends on
the integration of abstract logic, procedural thinking, and mental
simulation. Online coding platforms support this integration through
interactive exercises, real-time feedback, and visualizations of code
execution, enabling learners to reinforce cognitive structures that support
deep learning (Robins, et al., 2003). For example, platforms like
PythonTutor and CodeHS allow students to trace code line by line, helping

them visualize variable changes, function calls, and control flow in real
time.

Knowledge retention is equally influenced by repeated, meaningful
engagement with coding tasks that require both recall and application. As
found that novice programmers who regularly practiced tracing and code
interpretation exhibited significantly better long-term retention of
programming concepts (Lister et al., 2004). Online platforms facilitate
such practice through scaffolded challenges, spaced repetition, and
progressive task difficulty, which align with cognitive theories of durable
learning. These tools enable learners to revisit, revise, and reinforce
concepts at their own pace, making them especially effective in fostering
sustained comprehension and transferable programming expertise.

Table 3: Summary of Conceptual Understanding and Knowledge Retention

Learning Element Description
Impact on Conceptual

Understanding
Examples in Coding Platforms

Interactive Simulations
Visual, real-time code

execution with dynamic
feedback

Reinforces abstract programming
concepts through visualization

Scratch and Replit allow users to see
outputs and animations immediately

Incremental Learning
Modules

Concepts are broken down into
smaller, sequential lessons

Enhances retention by scaffolding
complexity gradually

Codecademy and Khan Academy offer
step-by-step programming tutorials

Immediate Feedback on
Errors

Platforms identify syntax and
logic errors as learners code

Facilitates self-correction and
deepens understanding

Code.org provides hints and error
messages during exercises

Embedded Quizzes and
Assessments

Knowledge checks integrated
within or after lessons

Reinforces learning through
repetition and application

FreeCodeCamp quizzes learners after
each module to test retention

4.2 Practical Application and Problem-Solving Skills

Developing practical programming skills involves more than theoretical
understanding it requires consistent application through real-world tasks
and logical problem-solving. Emphasize that coding tasks rooted in
computational thinking encourage learners to deconstruct problems,
identify patterns, and implement algorithms using appropriate data
structures and control flows (Grover and Pea, 2013). Online coding
platforms facilitate these outcomes by offering project-based challenges,
algorithmic puzzles, and real-time simulations that closely mirror real-
world computing tasks. For example, platforms like LeetCode and
HackerRank test students’ ability to build efficient, scalable solutions
across diverse problem domains such as sorting, recursion, dynamic
programming, and database querying.

Problem-solving within these digital environments also cultivates
metacognitive awareness and self-regulated learning strategies. As
highlight that learners benefit from iterative practice, reflection, and
feedback cycles, which are central to adaptive coding interfaces (Schunk

and Zimmerman, 2012). By engaging students in progressively complex
tasks, platforms help them diagnose logical errors, optimize performance,
and refine their approach to problem decomposition. These experiences
build learners’ capacity to tackle unfamiliar programming challenges
independently—an essential skill in both academic and professional
settings where novel, non-routine problems demand computational
fluency and practical coding competence.

4.3 Student Engagement and Motivation in Digital Learning

Student engagement in digital learning environments is multifaceted,
encompassing behavioral, emotional, and cognitive dimensions that
directly influence learning outcomes. As presented in figure 3 define
engagement as a dynamic state of involvement and investment in learning
activities, sustained by relevance, autonomy, and feedback (Fredricks, et
al., 2004). Online coding platforms such as Code.org, Khan Academy, and
Codecademy incorporate interactive lessons, real-time progress tracking,
and achievement badges to foster intrinsic motivation. These tools
transform abstract programming concepts into interactive experiences

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

that keep learners cognitively stimulated and emotionally invested in the
learning process.

Motivation in digital learning is further supported by the adaptability and
accessibility of online platforms, which offer self-paced learning,
personalized pathways, and social interactivity. Note that digital platforms
that integrate flexible design features and responsive feedback
mechanisms help maintain student interest even during prolonged
learning disruptions (Huang et al., 2020). For example, discussion boards
and collaborative coding environments enhance peer interaction, while
adaptive difficulty ensures that learners are challenged at appropriate
levels. These design principles not only reinforce persistence and task
completion but also build a sense of ownership and accomplishment key
drivers of motivation in digital programming education.

Figure 3 vividly illustrates how student engagement and motivation are
enhanced in digital learning environments through interactivity and
collaboration. The central “LEARNING” diagram surrounded by diverse
subject icons symbolizes a multidisciplinary and engaging approach to
education. Students gathered around the diagram, actively participating,
reflect the power of peer interaction in sustaining interest and motivation.
The tablet displaying an e-learning platform reinforces the role of
technology in making learning more dynamic and accessible. Platforms
like these often incorporate gamified elements, real-time feedback, and
personalized learning paths all of which are key drivers of student
motivation in digital education. The ASM Digital Education Hub
exemplifies how such tools can transform passive learning into an active,
student-centered experience.

Figure 3: Picture of Empowering Student Engagement Through Digital Learning Tools (Fredricks, Blumenfeld, and Paris, 2004).

5. CONTEXTUAL AND DEMOGRAPHIC CONSIDERATIONS

5.1 Differences Between Secondary and Tertiary Learners

Secondary and tertiary learners differ significantly in terms of cognitive
development, motivational drivers, and exposure to programming
concepts, which impacts how they engage with online coding platforms.
Secondary students often require structured guidance, scaffolding, and
highly visual content to bridge their limited prior experience with abstract
logic and algorithmic reasoning. As represented in table 4 found that
younger learners responded positively to tangible, context-rich
programming experiences such as those offered by the BBC micro:bit,
where creativity and hands-on interaction fostered curiosity and
conceptual understanding (Sentence et al., 2017). Secondary learners

benefit from gamified elements and scenario-based learning that reduce
cognitive load and make programming more approachable.

Tertiary learners, in contrast, typically possess higher metacognitive
skills, goal orientation, and discipline-specific motivations that drive
deeper engagement with coding environments. As observed that even at
the university level, introductory programming remains a significant
hurdle, though learners are better equipped to deal with abstract syntax,
debugging, and theoretical constructs (Bennedsen and Caspersen, 2007).
Online platforms for this group are most effective when they provide
complex, real-world challenges such as data processing, algorithmic
optimization, and software development projects that mimic industry
standards. These differences highlight the need for differentiated platform
design and instructional strategies across educational levels.

Table 4: Summary of Differences Between Secondary and Tertiary Learners

Aspect Secondary Learners Tertiary Learners
Implications for Coding Platform

Design

Cognitive Development
Developing abstract thinking;

benefit from concrete examples and
visuals

More capable of abstract
reasoning and complex logic

Secondary platforms should use visual
tools (e.g., block coding); tertiary

platforms can use text-based editors

Motivation and Engagement
Often extrinsically motivated by

rewards, games, or teacher
encouragement

More intrinsically motivated
by career goals and problem-

solving challenges

Gamification works better for younger
learners; real-world projects suit older

learners

Prior Knowledge and
Experience

Typically have limited or no
background in programming

May have foundational
knowledge or previous
exposure to computing

concepts

Secondary learners need scaffolding;
tertiary learners benefit from autonomy

Learning Autonomy
Require more structured, guided

instruction and supervision
More self-directed and

independent in learning

Platforms for secondary students should
offer step-by-step guidance; tertiary-

focused platforms can allow open-ended
exploration

5.2 Influence of Socio-Economic Backgrounds on Platform Usage

Socio-economic background plays a critical role in shaping students’
access to and engagement with online coding platforms. As presented in
figure 4 emphasize that the shift from the “digital divide” to “digital
inequality” highlights not only disparities in access to technology but also
differences in how digital tools are utilized (DiMaggio and Hargittai, 2001).
Students from lower-income households may lack reliable internet access,
modern computing devices, or a conducive learning environment, limiting
their ability to participate effectively in digital programming education. In
contrast, students from affluent backgrounds benefit from early exposure,
parental support, and access to advanced learning resources, leading to a

cumulative advantage in digital skill acquisition.

It further argues that these structural inequalities create usage gaps,
where disadvantaged learners engage with platforms at a more superficial
level, often focusing on entertainment or minimal interactivity, rather than
deep, skill-building tasks (Van Dijk, 2005). Online coding platforms that
fail to account for these disparities risk reinforcing existing educational
inequities. For instance, while platforms like Scratch and Code.org aim to
be inclusive, students without mentorship or digital fluency may struggle
to progress. Thus, socio-economic status significantly influences both the
frequency and quality of platform usage in secondary and tertiary
education.

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

Figure 4: Picture of Bridging Educational Gaps Through Accessible Online Learning (DiMaggio and Hargittai, 2001).

Figure 4 underscores how socio-economic backgrounds influence the
usage of online learning platforms by showcasing the flexibility,
accessibility, and affordability of digital education. For students from
lower-income households, traditional education may be hindered by costs
related to transportation, materials, or institutional fees. Online platforms,
as depicted through icons of laptops, mobile devices, and global
connectivity, offer a more inclusive alternative—allowing learners to
access quality education from anywhere, often at a lower cost or even for
free. This democratization of learning helps bridge educational gaps,
empowering individuals from underserved communities to pursue
knowledge, skills, and certifications that can improve their socio-economic
mobility.

5.3 Accessibility and Technological Barriers in Diverse Regions

Accessibility to online coding platforms is significantly influenced by
technological infrastructure, regional digital capacity, and socio-political
investments in connectivity. It underscores that in many low- and middle-
income countries, limited broadband penetration, unstable electricity
supply, and the high cost of internet-enabled devices hinder students’
access to digital learning tools (UNESCO, 2021). These technological
constraints create pronounced barriers, particularly in rural and
underserved regions, where learners are often unable to engage with
coding platforms that require high-speed connectivity, consistent access,
or advanced hardware. In such contexts, even well-designed platforms
may remain inaccessible, undermining their educational impact.

They emphasize that digital inclusion is not merely about providing access
but ensuring that users can meaningfully engage with technology
(Livingstone and Helsper, 2007). For example, language barriers, limited
digital literacy, and culturally unaligned content may further reduce
platform usability in diverse educational contexts. While some platforms
attempt to offer offline features or multilingual interfaces, many still
assume baseline digital competence and connectivity that cannot be taken
for granted in global south regions. These accessibility challenges call for
context-sensitive platform design and policy reforms that address
infrastructure, affordability, and educational support in diverse learning
environments.

6. EDUCATIONAL POLICY AND CURRICULUM IMPLICATIONS

6.1 Integration of Online Platforms into Formal Curricula

Integrating online coding platforms into formal curricula requires
deliberate alignment with educational standards, pedagogical goals, and
classroom realities. As presented in figure 5 emphasize that platforms
must support deeper learning by reinforcing core computational thinking
skills while adapting to the structure of blended or in-person instruction
(Grover, et al., 2015). When platforms are incorporated as supplementary
tools rather than isolated activities, they can reinforce theoretical
instruction with practical application, offering students continuous,
formative engagement with programming concepts. For example,
platforms like Code.org and Tynker are often used in middle and high
school computer science programs to scaffold lessons, provide interactive
coding tasks, and track student progress across units.

Curriculum integration also depends on teachers’ capacity to navigate and
embed technological tools within their instructional design. As highlight
the importance of Technological Pedagogical Content Knowledge (TPACK)
in enabling educators to choose and apply digital platforms that align with
content objectives and learning outcomes (Harris, et al., 2009). Effective
integration may involve mapping platform modules to national syllabi,
aligning assessment strategies, and training teachers in both platform
functionality and pedagogical adaptation. This structured approach
ensures that digital platforms enhance curriculum delivery rather than
disrupt instructional coherence.

Figure 5 featuring cubes with logos of popular digital platforms like
YouTube, WhatsApp, and TikTok, symbolizes the growing integration of
online tools into formal curricula. These platforms, originally designed for
communication and entertainment, are increasingly being repurposed for
educational use—supporting video-based learning, peer collaboration,
and real-time discussions. Their familiarity and accessibility make them
powerful tools for engaging students, especially digital natives, in ways
that traditional methods may not. By embedding such platforms into
formal education, institutions can create more interactive, personalized,
and socially connected learning environments that reflect the digital
realities of students’ everyday lives.

Figure 5: Picture of Blending Social Platforms with Formal Education for Modern Learning (Grover, Pea, and Cooper, 2015).

6.2 Teacher Training and Support for Hybrid Learning Models

Teacher readiness is a foundational determinant in the successful
deployment of online coding platforms within hybrid learning

environments. Argue that teachers’ pedagogical beliefs and self-efficacy
regarding technology use directly influence their willingness to integrate
digital tools into classroom instruction (Ertmer et al., 2012). Without

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

structured training and ongoing support, many educators especially those
in traditional or resource-constrained settings struggle to bridge
pedagogical goals with technological tools. In hybrid learning models,
where both face-to-face and online components must be seamlessly
aligned, professional development must extend beyond platform tutorials
to include instructional design strategies, digital classroom management,
and learner engagement techniques.

Support structures also play a crucial role in sustaining hybrid education
practices. As note that during the shift to remote learning, teachers
experienced significant challenges due to limited technical support, lack of
collaboration, and inadequate preparation (Trust and Whalen, 2021). To
address these gaps, institutions must invest in continuous training models,
mentorship systems, and accessible help-desk services tailored to
platform-specific needs. Equipping educators with the competencies to
customize learning experiences, assess student progress digitally, and
troubleshoot effectively ensures that online coding platforms can be
meaningfully integrated into hybrid instructional frameworks that
promote equity, continuity, and engagement.

6.3 Alignment with National Digital Literacy Goals

The integration of online coding platforms into educational systems must

align with broader national strategies for digital literacy and 21st-century
skills development. As represented in table 5 argue that global education
frameworks emphasize not only technical proficiency but also digital
citizenship, creativity, collaboration, and critical thinking (Voogt and
Roblin, 2012). These competencies are now embedded within many
countries’ curriculum reforms aimed at preparing learners for digital
economies. Online coding platforms such as Scratch, Code.org, and Khan
Academy directly support these objectives by cultivating problem-solving,
logical reasoning, and software fluency in age-appropriate formats that
can be adapted to national syllabi.

Equally important is the role of educators in promoting these goals
through structured digital skill development. Emphasize that achieving
national digital literacy benchmarks requires intentional design of
pedagogical practices and assessment tools that leverage technology for
cognitive advancement (Claro et al., 2018). Coding platforms that offer
modular lessons, trackable outcomes, and adaptive feedback can be
powerful instruments in advancing national ICT competencies. For
instance, including coding as a formal subject in secondary school
curricula not only equips learners for emerging job markets but also aligns
with policy imperatives to foster inclusive, digitally literate citizenries in
the global knowledge economy.

Table 5: Summary of Alignment with National Digital Literacy Goals

Focus Area
National Digital Literacy

Objective
Role of Online Coding Platforms Examples in Practice

Curriculum Integration
Embed digital skills into formal

education systems

Align coding modules with national
education standards and subject

syllabi

Nigeria’s NERDC ICT curriculum
integrates Scratch and HTML basics in

junior levels

21st Century Skill
Development

Promote creativity, critical
thinking, problem-solving, and

collaboration

Provide real-world tasks and
collaborative projects within coding

environments

Platforms like Code.org include team
coding challenges and problem-based

learning

Equity and Inclusion
Ensure all students, regardless of

background, can access digital
education

Offer offline access, multilingual
support, and mobile-friendly

interfaces

FreeCodeCamp and Khan Academy
support low-bandwidth access and

offline learning

Workforce Readiness
Prepare students for digital

economy and tech-driven jobs

Teach practical coding, software
development, and computational

thinking skills

Codecademy’s career paths align with
tech job roles like front-end developer

7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

7.1 Summary of Key Findings and Insights

The study revealed that online coding platforms have significantly
enhanced programming skill acquisition in both secondary and tertiary
education through features such as interactive learning, real-time
feedback, gamification, and adaptive content. These platforms support
self-paced learning and conceptual understanding by allowing learners to
progress according to their individual abilities and learning styles.
Students demonstrated improved problem-solving abilities and increased
engagement when learning was supplemented with visual, interactive
tasks and practical coding challenges. The use of gamified modules and
community support mechanisms also contributed to knowledge retention
and learner motivation across varying academic levels.

Moreover, the findings highlighted several contextual factors influencing
the effectiveness of online coding platforms. These include socio-economic
backgrounds, regional access to technology, and differences in digital
infrastructure across urban and rural areas. The study also found that
secondary learners require more guided and scaffolded approaches,
whereas tertiary students benefit from complex, real-world coding
problems. Successful integration into formal curricula depends heavily on
teacher training, alignment with national digital literacy goals, and
support for hybrid models. Overall, online coding platforms offer
transformative potential in digital education, but their full impact hinges
on inclusive access, localized implementation, and institutional support.

7.2 Limitations of the Study and Areas for Improvement

This study, while comprehensive in scope, faced several limitations that
may affect the generalizability of its findings. One major limitation was the
reliance on data from a limited number of geographic regions, which may
not fully capture the diverse challenges faced in areas with extremely
limited technological infrastructure or where digital education is still
emerging. Additionally, differences in the design, content, and language
offerings of various online coding platforms were not exhaustively
compared, which may have influenced the learner experiences reported in
different contexts. The study also did not deeply explore long-term
learning outcomes, such as students’ retention over several academic
years or the eventual application of skills in real-world or employment
contexts.

Areas for improvement in future research include expanding the sample
size to include more rural, underserved, and low-income populations to
better understand accessibility issues and usage disparities. Further
studies could also investigate the specific role of teacher engagement in
maximizing the effectiveness of these platforms, especially in hybrid
learning models. Longitudinal studies tracking students over time could
provide richer insights into how digital tools influence sustained skill
development. Additionally, platform-specific comparative analysis could
help identify which design features most effectively support learning at
different educational levels.

7.3 Recommendations for Further Research and Policy Development

Further research should focus on the longitudinal impact of online coding
platforms on students’ academic and career trajectories. Investigating
how sustained engagement with these platforms translates into real-
world application, higher education success, or employability in the tech
sector would offer valuable insights into their long-term effectiveness.
Comparative studies across countries, education systems, and socio-
economic groups are also essential to identify context-specific best
practices and scalable models of integration. Moreover, evaluating the role
of emerging technologies such as artificial intelligence and adaptive
learning algorithms within coding platforms can provide a deeper
understanding of how to personalize learning experiences for diverse
student populations.

In terms of policy development, governments and educational institutions
should prioritize the integration of digital skills training, including coding,
into national curricula as a core competency. Policies must also address
infrastructure gaps by investing in broadband access, device provision,
and teacher training, particularly in underserved regions. Collaboration
between policymakers, educators, and technology developers can ensure
that platform content aligns with curriculum standards and cultural
contexts. Incentivizing local development of coding resources and offering
multilingual content could further increase inclusivity and accessibility.
Comprehensive digital education policies will be crucial in equipping the
next generation with the skills needed for participation in the global digital
economy.

REFERENCES

Barna, B., and Fodor, S., 2018. An empirical study on the use of gamification
on IT students’ learning performance and motivation. Informatics in

Acta Electronica Malaysia (AEM) 6(1) (2022) 16-23

Cite The Article: Israel Grace, Onum Friday Okoh (2022). Evaluating The Impact of Online Coding Platforms on Programming Skill Acquisition in

Secondary and Tertiary Education. Acta Electronica Malaysia, 6(1): 16-23.

Education, 17(2), Pp. 213–231.
https://doi.org/10.15388/infedu.2018.11

Bennedsen, J., and Caspersen, M. E., 2007. Failure rates in introductory
programming: 12 years of Danish experience. ACM SIGCSE Bulletin,
39(2), Pp. 32–36. https://doi.org/10.1145/1272848.1272879

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., and Rumble, M.,
2012. Defining twenty-first century skills. In P. Griffin, B. McGaw,
and E. Care (Eds.), Assessment and Teaching of 21st Century Skills
(pp. 17–66). Springer. https://doi.org/10.1007/978-94-007-2324-
5_2

Bocconi, S., Chioccariello, A., Dettori, G., andKampylis, P., 2018. Developing
computational thinking in compulsory education: Implications for
policy and practice. European Journal of Education, 53(1), Pp. 23–
33. https://doi.org/10.1111/ejed.12265

Brusilovsky, P., and Millán, E., 2007. User models for adaptive hypermedia
and adaptive educational systems. The Adaptive Web, 4321, Pp. 3–
53. https://doi.org/10.1007/978-3-540-72079-9_1

Chen, C. M., and Tseng, Y. C., 2012. Effects of personalized learning paths
on students’ learning performance in a web-based programming
learning system. Computers and Education, 59(2), Pp. 349–362.
https://doi.org/10.1016/j.compedu.2012.01.004

Claro, M., Salinas, A., Cabello-Hutt, T., San Martín, E., Preiss, D. D.,
Valenzuela, S., and Jara, I., 2018. Teaching in a digital environment
(TIDE): Defining and measuring teachers’ capacity to develop
students’ digital information and communication skills. Computers
and Education, 121, Pp. 162–174.
https://doi.org/10.1016/j.compedu.2018.03.001

Dicheva, D., Dichev, C., Agre, G., and Angelova, G., 2015. Gamification in
education: A systematic mapping study. Educational Technology
and Society, 18(3), Pp. 75–88.
https://www.jstor.org/stable/jeductechsoci.18.3.75

DiMaggio, P., and Hargittai, E., 2001. From the ‘digital divide’ to ‘digital
inequality’: Studying Internet use as penetration increases.
Princeton University Center for Arts and Cultural Policy Studies
Working Paper Series, 15, Pp. 1–23.
https://doi.org/10.2139/ssrn.317245

Ertmer, P. A., Ottenbreit-Leftwich, A. T., Sadik, O., Sendurur, E., and
Sendurur, P., 2012. Teacher beliefs and technology integration
practices: A critical relationship. Computers and Education, 59(2),
Pp. 423–435. https://doi.org/10.1016/j.compedu.2012.02.001

Fredricks, J. A., Blumenfeld, P. C., and Paris, A. H., 2004. School engagement:
Potential of the concept, state of the evidence. Review of Educational
Research, 74(1), Pp. 59–109.
https://doi.org/10.3102/00346543074001059

Grover, S., and Pea, R., 2013. Computational thinking in K–12: A review of
the state of the field. Educational Researcher, 42(1), Pp. 38–43.
https://doi.org/10.3102/0013189X12463051

Grover, S., and Pea, R., 2018. Computational thinking: A competency whose
time has come. Computer Science Education, 28(1), Pp. 1–5.
https://doi.org/10.1080/08993408.2018.1433170

Grover, S., Pea, R., and Cooper, S., 2015. Designing for deeper learning in a
blended computer science course for middle school students.
Computer Science Education, 25(2), Pp. 199–237.
https://doi.org/10.1080/08993408.2015.1033142

Harris, J., Mishra, P., and Koehler, M. J., 2009. Teachers’ technological
pedagogical content knowledge and learning activity types:
Curriculum-based technology integration reframed. Journal of
Research on Technology in Education, 41(4), Pp. 393–416.
https://doi.org/10.1080/15391523.2009.10782536

Huang, R. H., Liu, D. J., Tlili, A., Yang, J. F., and Wang, H. H., 2020. Handbook
on facilitating flexible learning during educational disruption: The
Chinese experience in maintaining undisrupted learning in COVID-
19 outbreak. Smart Learning Institute of Beijing Normal University.
https://doi.org/10.13140/RG.2.2.35132.85120

Kelleher, C., and Pausch, R., 2005. Lowering the barriers to programming:
A taxonomy of programming environments and languages for
novice programmers. ACM Computing Surveys, 37(2), Pp. 83–137.

https://doi.org/10.1145/1089733.1089734

Kelleher, C., and Pausch, R., 2007. Using storytelling to motivate
programming. Communications of the ACM, 50(7), Pp. 58–64.
https://doi.org/10.1145/1272516.1272540

Lin, H.-C. K., and Atkinson, R. K., 2015. Using computer-based
programming environments to support learning of computational
thinking: A critical review. Educational Technology Research and
Development, 63(5), Pp. 671–695.
https://doi.org/10.1007/s11423-015-9396-x

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., …
and Thomas, L., 2004. A multi-national study of reading and tracing
skills in novice programmers. SIGCSE Bulletin, 36(4), Pp. 119–150.
https://doi.org/10.1145/1041624.1041673

Livingstone, S., and Helsper, E. J., 2007. Gradations in digital inclusion:
Children, young people and the digital divide. New Media and
Society, 9(4), Pp. 671–696.
https://doi.org/10.1177/1461444807080335

Pérez-Mateo, M., Maina, M., Guitert, M., and Romero, M., 2020. Learner-
generated contexts in online coding platforms: A framework for
adaptive and personalized learning. British Journal of Educational
Technology, 51(1), Pp. 61–76. https://doi.org/10.1111/bjet.12804

Redecker, C., 2017. European framework for the digital competence of
educators: DigCompEdu. Publications Office of the European Union.
Journal of e-Learning and Knowledge Society, 13(4), Pp. 9–22.
https://doi.org/10.20368/1971-8829/1389

Robins, A., Rountree, J., and Rountree, N., 2003. Learning and teaching
programming: A review and discussion. Computer Science
Education, 13(2), Pp. 137–172.
https://doi.org/10.1076/csed.13.2.137.14200

Schunk, D. H., and Zimmerman, B. J., 2012. Motivation and self-regulated
learning: Theory, research, and applications. Contemporary
Educational Psychology, 37(4), Pp. 212–220.
https://doi.org/10.1016/j.cedpsych.2012.01.003

Sentence, S., Waite, J., Hodges, S., MacLeod, E., and Yeomans, L., 2017.
“Creating Cool Stuff”: Pupils’ experience of the BBC micro:bit.
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education, Pp. 531–536.
https://doi.org/10.1145/3017680.3017749

Tang, X., Yin, Y., Lin, Q., Hadad, R., and Zhai, X., 2020. Assessing
computational thinking: A systematic review of empirical studies.
Computers and Education, 148, 103798.
https://doi.org/10.1016/j.compedu.2019.103798

Trust, T., and Whalen, J., 2021. K–12 teachers’ experiences and challenges
with using technology for emergency remote teaching during the
COVID-19 pandemic. TechTrends, 65, Pp. 371–385.
https://doi.org/10.1007/s11528-021-00525-y

UNESCO., 2021. Addressing the digital divide in education: Challenges and
strategies for inclusion. International Review of Education, 67(1–2),
Pp. 115–136. https://doi.org/10.1007/s11159-021-09878-6

Van Dijk, J. A. G. M., 2005. The deepening divide: Inequality in the
information society. SAGE Publications.
https://doi.org/10.4135/9781452231275

Voogt, J., and Roblin, N. P., 2012. A comparative analysis of international
frameworks for 21st century competences: Implications for national
curriculum policies. Journal of Curriculum Studies, 44(3), Pp. 299–
321. https://doi.org/10.1080/00220272.2012.668938

Waite, J., Sentence, S., Hodges, S., and MacLeod, E., 2020. Teacher
perspectives on the impact of a classroom computing initiative.
Computer Science Education, 30(1), Pp. 20–45.
https://doi.org/10.1080/08993408.2020.1727094

Wang, A. I., and Tahir, R., 2020. The effect of using Kahoot! For learning –
A literature review. Computers and Education, 149, 103818.
https://doi.org/10.1016/j.compedu.2020.103818

Watson, C., and Li, F. W. B., 2014. Failure rates in introductory
programming revisited. ACM Transactions on Computing
Education, 14(1), Pp. 1–24. https://doi.org/10.1145/2602488

https://doi.org/10.15388/infedu.2018.11
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.1111/ejed.12265
https://doi.org/10.1007/978-3-540-72079-9_1
https://doi.org/10.1016/j.compedu.2012.01.004
https://doi.org/10.1016/j.compedu.2018.03.001
https://www.jstor.org/stable/jeductechsoci.18.3.75
https://doi.org/10.2139/ssrn.317245
https://doi.org/10.1016/j.compedu.2012.02.001
https://doi.org/10.3102/00346543074001059
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1080/08993408.2018.1433170
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/15391523.2009.10782536
https://doi.org/10.1145/1089733.1089734
https://doi.org/10.1145/1272516.1272540
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1177/1461444807080335
https://doi.org/10.1111/bjet.12804
https://doi.org/10.20368/1971-8829/1389
https://doi.org/10.1076/csed.13.2.137.14200
https://doi.org/10.1016/j.cedpsych.2012.01.003
https://doi.org/10.1145/3017680.3017749
https://doi.org/10.1007/s11159-021-09878-6
https://doi.org/10.4135/9781452231275
https://doi.org/10.1080/00220272.2012.668938
https://doi.org/10.1080/08993408.2020.1727094
https://doi.org/10.1016/j.compedu.2020.103818
https://doi.org/10.1145/2602488

