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With the burgeoning interest in electric vehicles (EVs) due to their sustainable attributes, concerns arise 
regarding the electrical grid's capacity to handle the consequent rise in electricity demand from charging 
stations. Ontario's aspiration to ensure that 5% of all vehicle sales are electric by 2020, driven by the 
province's Climate Change Action Plan, accentuates these concerns, particularly with the potential rise in 
fossil fuel power generation. This study delves into the optimization of generator outputs and the strategic 
placement and sizing of EV charging stations in Ontario. The goal is to curtail overall generation costs, 
adhering to the demand, generation, and transmission constraints. Through the utilization of a representative 
system, modeled after the IEEE 34-node test feeder due to data unavailability, the research explores Ontario's 
power dynamics over a 24-hour period in 2020. The findings provide insights into ideal locations and 
dimensions for charging stations, while also quantifying the environmental ramifications of the increased 
electrical grid load. This paper offers a comprehensive strategy to mitigate grid stress while bolstering EV 
infrastructure efficiently. 
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1. INTRODUCTION

In recent years, there has been a notable rise in electric vehicle (EV) 
interest. The growing popularity of EVs can be largely attributed to their 
environmental benefits and sustainability. However, concerns have 
emerged regarding the impact of widespread EV adoption, particularly the 
increased electricity demand resulting from the operation of charging 
stations. 

Ontario has set a goal of having 5% of all vehicle sales be electric vehicle 
sales by 2020 (Ministry of the Environment, 2015). This goal was created 
to help the province meet its greenhouse gas emission goals outlined in 
Ontarios 5-Year Climate Change Action Plan (Ministry of the Environment, 
2015). However, the electrical grid stress caused by the charging stations 
required to power these electric vehicles may result in a substantial 
increase of fossil fuel power generation. 

This project aims to investigate the optimization of generator outputs and 
charging station placement and sizing in Ontario, to minimize overall 

generation costs while satisfying demand, generation, and transmission 
constraints. A system is created to analyze Ontarios generation output, 
power flow, and load draw over a day in 2020. These results are 
aggregated to determine optimal placements and sizing of charging 
stations, and to determine the overall environmental impact caused by 
charging station loading on the electrical grid throughout the day. 

2. ONTARIO REPRESENTATIVE SYSTEM

2.1   Overview 

Unfortunately, data on Ontario's distribution grid (with bus 
interconnections, line lengths, line impedances, etc.) were not available 
online, so a representative system was used for this optimization problem. 
The basis of the representative model is the IEEE 34-node test feeder 
(Anderson et al., 2018). This model was chosen based on its thorough 
documentation and appropriate system complexity. A visualization of the 
final system can be found in Fig. 1. 

Figure 1: Overview of the system's node structure (Generators are identified as white nodes with the first letter of the generation type next to the node. 
Node 1 is defined as the slack bus.) 
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3. POWER GENERATION 

To simplify power generation, the system features 6 generators, 
representing Ontario's primary energy sources: nuclear, hydro, gas, wind, 
solar, and biofuel. Nuclear and hydro generators are strategically placed at 
nodes with multiple line connections due to their significance in the 
system, while the remaining generators are evenly distributed. 

The hourly maximum and minimum power outputs of these generators 

was determined depending on their power source. The average nominal 
costs of operation (including capital, material, and shutdown costs) for 
each power source (2) were found in (Ontario Energy Board, 2017). These 
costs were adjusted based on each generators power output (see Figure. 
2). The amount of equivalent CO2 emissions produced from each 
generation source per kWh was found in (Schlmer et al., 2014). Both 
values were used as a basis for the system cost function, with the 
gCO2eq/MW values also being used to determine the environmental 
impact of increased generation caused by the charging station loads. 

Table 1: Cost Bases for Generation 

Nuclear Hydro Gas Wind Solar Biofuel 

𝜃2($/𝑘𝑊ℎ) 0.069 0.058 0.205 0.173 0.48 0.131 

𝜃1/𝜃2 0.7 0.9 0.7 1 1 0.7 

𝜃3/𝜃2 1.3 1.8 1.3 1 1 1.3 

𝑔𝐶𝑂2𝑒𝑞/ 

𝑘𝑊ℎ 
12 24 490 11 41 230 

Figure 2: Visualization of generation cost adjustment with respect to output (P1 and P2 and taken to be and between Pmin and Pmax, while the slope s is 
located in Table 1) 

3.1   Load Distribution 

The overall demand load was also found by averaging hourly IESO data 
from Mar. 23-27, 2018. This was done so that the system load would 
adequately match the overall generation capability. This load was first 
distributed with a constant probability distribution function throughout 
all 34 nodes in the system. The nodes were then equally split into either 
commercial or residential loads. The loads were adjusted based on the 
varying distribution of power between commercial and residential loads 
throughout the day (Andersen et al., 2017). 

3.2   Transmission Lines 

The impedances, lengths, and configurations of the lines were found in 
(Anderson et al., 2018). To have the system closer resemble a transmission 
grid rather than a distribution grid, lines were added between nodes 1 and 
5, 11 and 24, 13 and 29, and 19 and 28. The flow limits of the lines were 
determined by scaling the total system load according to the maximum 
number of transmission lines at each node to make the optimization 
feasible. The operating voltage of the system was chosen to be the highest 
in Ontario (500kV), as we would be analyzing power flow at the highest 
level. Thus, the per unit voltage base was chosen to be 500kV while the per 
unit power base was chosen as the commonly used 100MW. All other per 
unit bases were derived from these bases. Lines losses were considered by 
squaring the per unit power flows, multiplying by per unit resistance of 
the respective line, and adding the resulting power loss, times cash cost 
per unit energy, to the objective. 

4. CHARGING STATIONS 

The number of electric vehicle charging ports required in this system was 
determined based on the estimated number of electric vehicles currently 
in Ontario, as well as the expected growth in electric vehicle sales by 2020. 

At the end of 2017, there were approximately 47,800 electric vehicles on 
the road in Canada (Schmidt,  2018). In the past 4 years, Ontario has 
accounted for approximately 40% of all Canada-wide electric vehicle sales 
(Schmidt,  2018). This means that about 40% of these 47,800 electric 
vehicles are currently on the road in Ontario. Given the recency of most 
electric vehicle sales, it can be assumed that very few of these vehicles will 
be scrapped in the near future. Thus, we assume that this base number of 
19,120 vehicles will remain in 2020. A total of 284,000 passenger vehicles 
were sold in Ontario in 2015 (Ministry of the Environment, 2015). 
Assuming total vehicle sales remained constant, but electric vehicle 
percentage sales increased from 1.6% in 2017 to 2.4%, 3.5% and 5% in 
2018,2019, and 2020 respectively, then the total number of electric 
vehicles in Ontario is expected to reach about 50,008 in 2020. 

Two common ratios exist for defining the number of electric vehicles 
charging ports required in a region: population to charger ratio and 
vehicle to charger ratio (International Council of Clean Transportation, 
2017). To determine the number of chargers to be expected in our system, 
the vehicle to charger ratio will be used, as that will better account for the 
large influx of predicted electric vehicles in the near future. In Canada, 
there are currently between 10-15 electric vehicles per charging port 
(International Council of Clean Transportation, 2017). Our system 
assumes the upper bound of charging ports, so a 10:1 ratio of electric 
vehicles to charging ports was used. This means there are 5,000 charging 
ports to be placed in our system. 

The power level of the chargers was all chosen to be Level 2 at 19.2kW 
(Yilmaz and Krein, 2013). While some Level 3 chargers will inevitably be 
installed - with more being added as time progresses - there will likely not 
be many by 2020. Our system will consider units of 19.2kW chargers, with 
their percentage usage varying throughout the day. The year averaged 
energy draws per hour from was used to determine the fractional power 
draw from all chargers at each hour of the day (Jiang and Tian,  2016)  . 
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Figure 3:  Change in fractional charger load throughout the day 

5. OPTIMIZATION PROBLEM DEFINITION 

The model is defined by defining total system cost as the objective function 
while introducing constraints from practical power grid system and EV 
chargers. 

5.1   Objective Function 

Economic dispatch cost functions and transmission loss functions (2) and 
(3) are nonlinear functions which are linearized by line segment 
approximation. Pollutant emission has been converted into cost by 
introducing the CO2 treatment coefficient to simplify the multi-objective 
problem into a single objective problem (4). The compensation function 
(5) has been added to promote matching of the EV charger distribution 
pattern with the system load distribution. In real life, heavy loads usually 
indicate higher day-time population density and implies larger usage of 
electrical vehicles. 

Overall objective function 

𝑀𝑖𝑛𝐸± = (1𝑏) + (1𝑐) + (1𝑑) + (1𝑒)  (1) 
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For these purposes of this work, the following definitions are valid: 

𝐸 expected system cost over the planing horizon ($) 

𝑘 
electricity-conversion technology, with k=1 for nuclear, k=2 
for hydro, k=3 for gas, k=4 for wind, k=5 for solar, k=6 for 
biofuel. 

𝑡 hour of the day ∈ {1,2,… ,24} 

𝑙 transmission line number ∈ {1,2, … ,37} 

𝛿𝑘 
emission coefficient of 𝐶𝑂2 equivalent for generation 
technology in question 

𝑃𝐺𝐶𝑘 cost for generating power ($/p.u.) 

𝑃𝐺𝐴𝑘,𝑡 
power generation amount for technology k during hour t 
(p.u.) 

𝐹𝑃𝑈𝑙,𝑡 line flow through line I during hour t (p.u.) 

𝑅𝑃𝑈𝑙  line resistance (p.u.) 

𝑉𝑃𝑈 system voltage level (p.u.) 

𝑇𝑃𝐶 loss cost ($/p.u.) 

𝛽 load to charger conversion ration 

𝐶𝐶𝑃𝑘,𝑡
±  operation cost for 𝐶𝑂2 treatment ($/ton) 

𝐸𝑃𝐶 EV charger placement compensation 

𝐿𝑆𝐿𝑛,𝑡  local system load (p.u.) 

𝐸𝑉𝐶𝑛 number of charger at node n 

5.2   Constraints 

Equations (6) and (7) depict the fundamental equilibrium constraints for 
power flow optimization while (8) and (9) are the constraints from 
practical power generation and transmission. The CO2 emission constraint 
(10) originates from our environmental impact reduction objective and 
the limit is derived by scaling the Ontario governments 2020 CO2 emission 
goal to be compatible with our system power generation level (Ministry of 
the Environment, 2015). The total number of EV chargers (11) is decided 
by the total predicted future electrical vehicle count and the ratio of 
chargers to vehicles. Limits for the minimum number of EV charger at each 
station (12) is introduced to justify the high capital cost of station 
construction. Non-negativity constraints are imposed on the decision 
variables and integer constraints are necessary for the number of EV 
chargers at each bus. 

Constraint of total power demand 

6 34

, ,
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Constraint of local power demand 

𝐿𝑃𝐺𝐴𝑛,𝑡 − 𝑃𝐼𝐽𝑛,𝑡 = 𝐿𝑆𝐿𝑛,𝑡 + 𝐸𝑉𝐶𝑛 × 𝐸𝑉𝐿𝑡, ∀𝑛, 𝑡 (7) 

Constraint of power generation limit 

𝑃𝐺𝐿𝑘,𝑡
− ≤ 𝑃𝐺𝐴𝑘,𝑡 ≤ 𝑃𝐺𝐿𝑘,𝑡

+ , ∀𝑘, 𝑡 (8) 
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Constraint of transmission capacity 

𝑇𝐿𝐶𝑙,𝑡
− ≤ 𝐹𝑃𝑈𝑙,𝑡 ≤ 𝑇𝐿𝐶𝑙,𝑡

+ , ∀𝑙, 𝑡 (9) 

Constraint of CO2 emission 
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Constraint of EV charger quantity 
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Constraint of local EV charger quantity limit 

𝐸𝑉𝑁𝑛
− ≤ 𝐸𝑉𝐶𝑛 ≤ 𝐸𝑉𝑁𝑛

+, ∀𝑛 (12) 

Nonnegativity constraint 

𝑃𝐺𝐴𝑘,𝑡, 𝐿𝑃𝐺𝐴𝑛,𝑡, 𝐸𝑉𝐶𝑛 ≥ 0,∀𝑘, 𝑛, 𝑡 (13) 

Integer constraints 

,nEVC n Z (14) 

𝐸𝑉𝑇𝐿 total EV load (p.u.) 

𝐿𝑃𝐺𝐴𝑛,𝑡 power generation amount per node (p.u.) 

𝑃𝐼𝐽𝑛,𝑡 power injection per node (p.u.) 

𝐸𝑉𝐿 EV charger load per charger coefficient (p.u./charger) 

𝐶𝑂𝐿 𝐶𝑂2 emission limit per day (ton) 

𝑃𝐺𝐿𝑘,𝑡
±  power generation limits 

𝑇𝐿𝐶𝑙,𝑡
±  transmission line limits 

𝐸𝑉𝑁𝑛
± charger quantity limits 

5.3   DC power flow 

For the system in question, we applied the DC power flow model. The 
model is described by the equations below. 𝑋𝑃𝑈 definition 

2

100

(500 )

MW
XPU X

kV


=


(15) 

Susceptance matrix 

𝐵𝑃𝑈 = 𝐴𝑡 × 𝑋𝑃𝑈−1 × 𝐴 (16) 

Injected power equation 

𝑃𝐼𝐽 = 𝐵𝑃𝑈 × 𝜃  (17) 

Flow equation 

𝐹𝑃𝑈 = 𝑋𝑃𝑈−1 × 𝐴 × 𝜃 (18) 

𝑋 line reactance matrix ( )

𝑋𝑃𝑈 line reactance matrix in p.u. (p.u.) 

𝐵𝑃𝑈 line susceptance matrix in p.u. (p.u.) 

𝐴 adjacency matrix 

𝜃 angle vector (rad) 

5.4   Solver 

Due to the integer number of EV chargers constraint introduced by (2i), 
the solver intlinprog is used for mixed-integer optimization. In addition, 
the demand input is the real-time 24-hour demand data which expands all 
the decision variables with a time dimension of 24. The goal of this 
optimization is to solve for the optimal EV charger location distribution 
which results in the lowest system cost over an entire day. Therefore, only 
EVC (the number of chargers at each station) has no time dimension. The 
model has been constructed under the MATLAB YALMIP code 
environment and no additional solvers are involved. 

6. RESULTS AND ANALYSIS 

6.1   Load And Optimal Generation 

Hydro is almost always maximized due to its low combined capital and 
carbon cost. However, the high price put on operating hydro at its 
maximum power output is able to prevent it from being permanently 
maxed out. This makes the hydro power output more realistic, as the 
reserves in hydro stations can’t sustain constant maximum power output. 
Nuclear remains relatively constant throughout the day, as per its 
operation restrictions, and gas and biofuel are able to perform peaking 
during periods of high demand. One anomaly in our results, however, is 
that biofuel is not turned off during the middle of the day when it isn’t 
required. This result contrasts the reality in Ontario, where biofuel is not 
often utilized unless there is a strong necessity. 

6.2   Station Placement And Sizing 

The placement and sizing of the stations (Figure. 4) seems to generally 
match the load distribution. We can see that the stations are placed in 
areas with high daily 

loads, which is expected due to our focus on placing chargers in/near high 
energy consumption nodes. This ensures public chargers will be more 
readily available for charging during the day. We also notice a spike in 
charger placement at the hydro generation bus due to price advantage 

6.3   Cost Analysis 

The costs of the optimized system with the EV chargers installed is 
displayed in Table II. The system was run again with no EV chargers 
installed, to define baseline pollutant production. The resulting difference 
shows that adding 5,000 EV chargers to the system produced an additional 
320 tons of CO2 equivalent pollutants per day. 

Generation Cost 
($1000’s/day) 

Pollutant Cost 
($1000’s/day) 

Pollutant Produced 

ton CO2 eq/day 

w/ 
w/o 

37,982 
37805 

630.6 
614.6 

12,612 
12,292 

To compare with this, we can look at the total emissions saved by driving 
electric vehicles instead of fossil fuel vehicles. The emissions produced by 
driving an electric and fossil fuel vehicle in Ontario are about 422 

Figure 4:  Distribution of the EV chargers per node (bottom), with generation outputs (top) and load distributions (middle) for comparison 
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kgCO2eq/year and 4,192 kgCO2eq/year respectively (Kopperson and 
Kubursi, 2014). Given the number of electric vehicles in 2020 is expected 
to be 50,000, then the amount of emissions saved from replacing fossil fuel 
vehicles with electric vehicles on the road is approximately 516.4 tons of 
CO2 equivalent pollutants per day. This means that our system justifies the 
replacement of fossil fuel vehicles with electric vehicles solely on an 
emissions production basis. However, when taking into consideration the 
costs it would take to install, operate, and maintain these charging 
stations, the tradeoff may not be as attractive financially. 

7. CONCLUSIONS AND FUTURE WORK 

We were able to create a statistical analysis and construct a model that 
was loosely representative of Ontarios transmission grid. The model was 
put under limits that were derived from the provinces generation, load, 
transmission characteristics, and greenhouse gas emission goals, and was 
able to configure an optimal distribution of charging stations throughout 
the model based on total system cost. The resulting hourly generation 
patterns and charger distribution followed trends that emulated realistic 
scenarios. The final result of the model justified the shift from fossil fuel 
vehicles to electric vehicles, solely based on the emissions saved from 
vehicle operation versus the emissions produced to charge these vehicles 
given our generators current capacities. This model could potentially be 
used for actual charger distribution planning in the future, especially if a 
more accurate system model was available. Also, in future models, there 
will be more patterns being considered to improve the model accuracy 
such as climate factors, seasonality and geographical data (Koeva, 
2022).Significant improvements that would be made with a better model 
include accurate placement and limits of generators, loads, and 
transmission lines; more accurate generation cost functions; better 
identification of residential and commercial nodes. 
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