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This paper is focusing on the stability analysis of the voltage mode control buck converter controlled by pulse-
width modulation (PWM). Using two different approaches, the nonlinear phenomena are investigated in two 
terms, slow scale and fast scale bifurcation. A complete design-oriented approach for studying the stability of 
dc-dc power converters and its bifurcation has been introduced. The voltage waveforms and attractors 
obtained from the circuit simulation have been studied. With the onset of instability, the phenomenon of 
subharmonics oscillations, quasi-periodicity, bifurcations, and chaos have been observed.  
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1. INTRODUCTION 

DC-DC power converters are variable topology systems that display a 

variety of nonlinear behaviour like bifurcation, quasi-harmonics, and 

chaos. These nonlinear phenomena affect the normal operation of the 

converter and force it to change its normal cyclic operation to random 

behavior (Alturas et al., 2019). There are several reasons why it is 

important to avoid operating dc-dc power converters in non-linear mode. 

One of the main reasons is the possibility of having multiple switching in 

one clock period when the converter works nonlinearly. In addition, when 

the system is operating in the non-linear region, the AC components for 

the output voltage and the inductance current increase, which reduces the 

system's efficiency. Due to these unpredictable and often undesirable 

phenomena, a focused analysis of the complex dynamic behavior and 

stability of the dc-dc power converters are required and sometimes 

compulsory.  

System stability is usually characterized by outputs or some of its internal 

states, if they were growing without limits the system so-called unstable, 

otherwise it is stable. Not all systems are stable or unstable,  as the system 

could also be marginally stable. The term instability refers to a sudden 

change of qualitative behaviour of a dynamical system as one or more of 

its parameters are varied. Mathematically, this is called a bifurcation and 

the parameter value at which the bifurcation occurs is known as a 

bifurcation point. Bifurcation diagrams offer a convenient way to 

investigate the instability by presenting the behaviour of the system 

graphically. In this diagram, the steady state behaviour of the system is 

plotted against the bifurcation parameter, and by using this diagram it is 

possible to visually assessment the steady state behaviour of the system. 

For example, if the system is operating in stable mode, period-1, for a 

specific parameters value, the result will be a single point on the diagram, 

and if it was period-2 it will be 2 points and so on. 

According to the nature of the qualitative change, there are two different 

types of bifurcation, smooth and non-smooth bifurcation. In smooth one, 

the bifurcation occurs at the stability boundaries, while in non-smooth 

kind the bifurcation occurs at the operation boundaries. Consequently, the 

second kind occurs just in the switched dynamical systems (Elbkosh, 

2009; Daho, 2009). 

1.1 Smooth bifurcation 

The bifurcation type can be characterized using the eigenvalues, of the 

invariant set, movement as a circuit parameter changes. If one or a pair of 

the eigenvalues goes out of the unit circuit smoothly, then the resulting 

bifurcation known as a smooth bifurcation. This kind of bifurcation can be 

analyzed using the jacobian matrix or monodromy matrix. Based on the 

movement of the eigenvalues as they cross the unit circuit, smooth 

bifurcation can be divided into three different classes (Elbkosh, 2009; 

Daho, 2009): 1) Saddle-node bifurcation, which is related to one of the 

eigenvalues of the jacobian matrix or monodromy matrix becomes equal 

to +1. Mathematically, one of the eigenvalues goes out of the unit circuit on 

the positive real line. As a result, the stable fixed-point breaks into two new 

fixed points and the original fixed point becomes unstable. In discrete-time 

dynamical system, the saddle-node bifurcation is called fold bifurcation. 2) 

Period doubling bifurcation, which is relates to one of the eigenvalues 

becomes equal to -1, the system becomes unstable in period doubling 

term. Mathematically, one of the eigenvalues goes out of the unit circuit on 

the negative real line. In this case, the stable fixed point becomes unstable 

and a new stable double-period appears. In discrete-time dynamical 

system, this kind of bifurcation is known as a flip bifurcation or sub-

harmonic bifurcation. 3) Hopf bifurcation, where a fixed point of a 
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dynamical system losses stability as a pair of complex conjugate 

eigenvalues of the linearization around the fixed point cross the imaginary 

axis of the complex plane. In discrete-time dynamical system, this kind of 

bifurcation is known as Neimark bifurcation. All smooth bifurcations are 

interrupted by non-smooth bifurcation such as border collision which 

comes into play to disrupt the growth of the standard oscillation. 

1.2 Non-smooth bifurcation 

Non-smooth bifurcation, such as border collision, is discontinuous 

bifurcation which is characterised by sudden jumps in the eigenvalues. As 

a result of this bifurcation, the system losses its operation and the 

behaviour is changed suddenly, e.g. from one orbit to another, from stable 

to unstable, and so on (Morel et al., 2004). In the literature, many research 

efforts have been made to study and analyze the dynamic behaviour of     

dc-dc converters and their stability. The most popular approach is the 

averaged model which is suitable to predict slow scale instability and lacks 

to predict fast scale instability (Verghese and Banerjee, 2002; Mazumder, 

2001; El Aroudi et al., 2010; El Aroudi et al., 2008). In order to predict fast 

scale instabilities, there is a need to move to the discrete-time models. 

Although this approach provides a relatively complete idea about the 

system behaviour in both slow and fast scale terms, the derivation of the 

discrete map is very complicated and usually it cannot give a closed form 

expression for the stability conditions (Verghese and Banerjee, 2002; 

Mazumder, 2001; El Aroudi et al., 2010). There are many regimes that the 

switching power converters can work within, such as period-1 operation, 

period-2 operation, and so on. In order to get the desired periodic 

operating mode, it is important to choose the appropriate parameters’ 

values (Alturas et al., 2019). These parameters are the switching 

frequency, the input voltage Vin, the inductance L, the resonance 

frequency ωo, the duty cycle D, the proportional gain kp, and the zero 

frequency ωz of the controller.  

Control circuits play an important role in the nonlinear behaviour of DC-

DC power converters, to be more precise the pulse with modulation 

(PWM). The ripple component before the PWM is the main reason that 

gives birth for fast scale bifurcation. In addition, independently of the 

parameters changing, if the ripple component before the PWM modulator 

exceeds a critical value, the system shows fast scale oscillation (El Aroudi 

et al., 2010; Giaouris et al., 2008; Alarcon et al., 2006; El Aroudi et al., 

2006). In this paper, two different approaches are combined together to 

study and investigate the nonlinear behaviour of DC-DC power converters. 

The first approach is based on the conventional Routh-Hurwitz (RH) 

criterion, which is suitable to predict slow scale bifurcation but lakes to 

predict fast scale bifurcation. The second approach is based on the level of 

the ripple component at the PWM modulator from the voltage controller, 

which is used to predict fast scale instability. By combining these two 

approaches, a complete design-oriented perspective of instability in terms 

of fast and slow scale has been achieved. The bifurcation diagram for both 

slow and fast scale bifurcation is obtained using the proportional gain kp 

as a sweep parameter. It has been shown that, the system exhibits 

nonlinear phenomena such as slow and fast scale oscillation as the value 

of kp is changed. The nonlinearities prediction have been shown 

analytically and have been confirmed using Matlab simulation. 

2. THE VOLTAGE MODE CONTROLLED BUCK CONVERTER 

Buck converter is the most widely used dc-dc converter topology in power 

electronics applications due to its simplicity, ease, and precision. Buck 

converter is used to convert an input dc voltage to a lower level dc voltage 

with a very high practical efficiency, about 92% (Verghese and Banerjee, 

2002). Figure 1 shows a graphical illustration of the buck converter under 

the PWM voltage mode. The output voltage is sensed and fed back to form 

the error voltage Vref  – Vo with the help of voltage controller in the form of 

PI controller. The buck converter has two operation modes. For ON sub-

interval when the switch is close, the equations that represent the buck 

converter are: 
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During the OFF sub-interval when the switch is open, the equations of the 

buck converter are: 
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Figure 1: The dc/dc converter topologies. 

In continuous conduction mode (CCM), the switch conducts for a fraction 

d of each duty cycle and the diode conducts for the remainder, 1-d. Thus, 

the averaged model will be found by multiplying equations (1) and (2) by 

d and equations (3) and (4) by 1-d and then adding them up. By applying 

the averaged model on the state space equations for this particular system, 

the following averaged model is obtained: 

d
L

V
v
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1

dt

di in
C

L +−=
−

                 (5) 

where d is the modulated signal which in the case of PWM is given by: 

m

lcon

V

VV
d

−
=                   (6) 

In order to regulate the output voltage to a desired reference voltage, a 

closed loop in the form of a dynamic PI controller is used which define a 

third state variable e (the error): 

−

−= Cref vV
dt

de                   (7) 

The PI controller is one of the most common controllers that used in 

control applications. The basic principle of the PI controller is to act upon 

the variable to be controlled through a combination of two elements:   

1) The proportional gain (kp), where the resulting signal is proportional to 
the error signal. This part is used in order to reduce the rising time and the 

steady state error but will not get rid of it.  

2) The integral part (ki), where the resulting signal is proportional to the 
integral of the error signal. This part is used to eliminate the steady state 

error, but it has a bad effect on the transient response. Figure 2 shows the 
structure of the PI controller and its parts are connected in time domain.  
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Having solved equations (5) and (8) and substituting in (6), the duty cycle 

of this system is given by: 
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where Vm = VU - VL is the amplitude of the ramp signal, and ωz is the zero of 

the PI controller. By substituting equation (9) in (5), the closed loop 

averaged model of the buck converter is obtained. 

In order to apply the RH criterion, the model in equation (5) has to be 

transferred to the characteristic polynomial form. There are many 

approaches that used to transfer the system from its state space 

representation form to polynomial form. By applying one of these 

approaches, the characteristic polynomial of this model can be given as 

follows: 
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Figure 2: The PI controller diagram 

3. THE BIFURCATION IN VOLTAGE-MODE CONTROLLED BUCK 

CONVERTERS 

The behaviour of the DC-DC power converters is depending on the circuit 

parameters. One way to start the phenomena of chaos is the period 

doubling bifurcation which will continue while there is no stable state 

variable. The Routh-Hurwitz criterion is a method that used to determine 

if the roots of the system are stable or not without computing the actual 

roots. If the system is in polynomial form, so the RH criterion can be 

applied. 

The conventional RH stability criterion has been used in order to examine 

the slow scale instability index of the buck converter. The RH table is given 

by (Harwin, 2007): 
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A sign change in the first column means the system is unstable. For the 

polynomial in equation (11) this requires: 

0
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By substituting ,a,a,a 210 and 3a from equation (11) in equation (13), 

the condition for the system to be stable is: 
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Equation (14) gives a general expression to design a stable system in the 

slow scale term, which can used to determine the suitable parameters that 

ensure slow scale stability. For instance, the critical value of the 

proportional gain of the PI controller that makes sure the system is stable 

in slow scale term is given by: 
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The system shows fast scale bifurcation depending on the values of the 

circuit parameters. By increasing the ratio of the converter natural 

frequency fo to the switching frequency fs, the converter is more prone to 

fast scale oscillation (Alarcon et al., 2009; Rodriguez-Vilamitjana et al., 

2007; Alarcon et al., 2006). Consequently, it has been presented as a 

bottom-line hypothesis that the value of the ripple component at the PWM 

modulator leads to the loss of the period-1 operation in fast scale 

bifurcation term. As a result, it is possible to use the level of the ripple as 

an index to predict the fast scale bifurcation in switching devices. In an 

earlier work, this index has been defined as the ripple at PWM modulator 

normalized to the ramp signal amplitude and is given by (El Aroudi et al., 

2010): 

C
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Where 
−

= ΓkΓ p
 is the transfer function of the PI controller evaluated at 

the switching frequency, and ΔVC is the output voltage ripple? The output 
voltage ripple is given by: 
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Where 0.5

o (LC)ω =  is the natural frequency, D is the duty cycle, D1D −=
−

, and 
sS 2ππω =  is the switching frequency. By substituting equation (17) 

in (16), the index becomes: 
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An approximation form of the critical ripple which as a function of the duty 

cycle can be given by (El Aroudi et al., 2010): 
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Where V is given by: 
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As the ripple index exceeds a critical value criticalρ , the system shows fast 

scale oscillation. The condition for avoiding losing the fast scale stability of 

the circuit can be given from: 

CFS ρρ                                      (21) 

From equation (21), the fast scale instability will take place when: 

CFS ρρ =                                    (22) 

By substituting equations (18) and (19) in (22), a general expression 

which can be used to give the critical values of the system parameters that 

make the system behave in fast scale instability can is given by: 

0
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For example, the critical value of the proportional gain that give birth the 

fast scale oscillation is: 

−

−−
=

−

= ΓkΓ,

)D2D(vπωΓ

ω

V

V
k p

22

O

2

s

in

m
FSρ,

                                                     (24) 

In order to calculate the values of the slow and fast scale instability indexes 

of the system, the Matlab M-file has been used. By implementing the 
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previous equations it has been analytically found that: 

9.9k FSP, =  , 0.51k SSP, =                                   (25) 

4. SIMULATION AND RESULTS 

In order to validate the two closed expressions that derived for both the 

slow and fast scale prediction, the buck converter was implemented in 

Matlab/Simulink as shown in Figure (3). The switching instants were 

determined by comparing a ramp signal with the control signal. 

 

The values of the buck converter circuit parameters that used in the 

simulation are: Vin=3V, R=1 Ω, L=30nH, C=50Nf,  fs=50MHz, Vl =0V, Vu =1V,  

Vref =1.5V. The selection of these parameters is based on having a converter 

with a low ratio of the switching frequency fs to the cut-off frequency fc of 

LC filter, hence showing moderately large ripples (El Aroudi et al., 2010). 

All the previous explained theoretical analyses are programmed using an 

M-file in Matlab. As the switch is changing its state from ON to OFF 

periodically by the switching frequency, the circuit shows periodic 

behaviour. It is clear that, even for a small change in the values of the DC-

DC circuit parameters the system may become unstable. 

 

System waveforms as the proportional gain kp=9, ωz=14.28 Mrad/s are 

shown in Figures (4), (5), and (6). It is obvious that the system is working 

in period-1 operation and hence the system is stable.  

 

Figure 3: The block diagram of Matlab-Simulink. 

 

Figure 4: Phase portrait of the system, kp=9, ωz=14.28Mrad/s 

 

 

 

Figure 5: Standard period operation before fast scale bifurcation kp=9, 

ωz≈14.28Mrad/s. 

The difference between figure (5) and figure (6) is that the PI controller 

parameters are chosen differently in each case. In figure (5), the PI 

controller was chosen with sufficiently high amplitude of the PI controller 

transfer function so that the ripple magnitude at the PWM modulator will 

be significantly high. In contrast, in figure (6), the amplitude of the PI 

controller’ transfer function is lower which means the frequency 

components and the harmonics are smaller in order that the ripple 

amount at the PWM modulator will be lower. 

Under parameters changing, the system may loss the desired periodic 

oscillation and consequently the stability. As a result, the dynamic 

behaviour of the buck converter will differ from that of Figures (4), (5), 

and (6). By considering the proportional gain kp of the PI controller as a 

sweep parameter the system is more prone to introduce bifurcation in the 

two slow scale and fast scale terms. 

System waveforms as the proportional gain kp=10 and ωz=14.28Mrad/s 

are illustrated in Figures (7) and (8). It is clear that the system is working 

in period-2 operation mode which means that the states repeat 

themselves every two switching cycles. Usually period doubling 

phenomena end in a chaotic behaviour. 

 

 

 

Figure 6: Standard period operation before slow scale bifurcation 
kp=0.3, ωz≈33Mrad/s. 
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Figure 7: Phase portrait of the system, kp=10, ωz=14.28Mrad/s 

 

 

 

Figure 8: Quasiperiodic oscillation due to a period doubling bifurcation 

after fast scale bifurcation kp=10, ωz≈14.28Mrad/s. 

Another well know nonlinear dynamic behaviour in power electronic 

circuits is slow scale bifurcation. As the proportional gain has changed to 

kp =0.5 and ωz = 33 Mrad/s, the buck converters operates in slow scale 

oscillation mode as can be seen from figure 9. In Figure (9), the zero 

frequency ωz is equal to 33 Mrad/s which is greater than ωc, in this case 

slow scale bifurcation is possible as predicted by equation (14).  

In order to validate the previous closed term for both slow and fast scale 

oscillation the bifurcation diagram has been plotted for two different 

cases. In Figure (10), the value of the zero frequency ωz is equal to 14.28 

Mrad/s which is smaller than ωc, thus and according to equation (23), the 

system will not show slow scale instability. As a result, period doubling 

bifurcation takes place at a critical value of the proportional gain kp of 9.8 

as can be seen from figure (10-a). Figure (10-b) shows evolution of the 

stability index ρss showing that at the fast scale bifurcation point the 

stbility index ρss is equal to 1 in a good concordance with equation (14). 

Figure (11-b) shows the evolution of the stability index ρFS, showing that 

at the slow scale bifurcation point the stbility index ρFS is equal to the 

critical ripple ρc in a good concordance with equation (23). As can be seen 

from Figure (10), the bifurcation point takes place at critical value of the 

bifurcation parameter kp = 9.8 in a good concordance with kp = 9.9 in 

equation (25). In addition, from Figure (11), it is clear that the bifurcation 

point takes place when the bifurcation parameter is about 0.51 which is in 

a good concordance with 0.51 in equation (25). It has been observed that 

the instability indexes that derived previously for kp are depending on the 

location of the zero of the PI controller ωz with respect to ωc. For example, 

if ωz > ωc, the system will slow fast scale bifurcation and slow scale 

bifurcation is impossible. On the other hand, If ωz < ωc the system will show 

slow scale bifurcation. 

As can be seen from previous figures, the stability analysis of DC-DC buck 

converter has been investigated using two different methods; the first one 

is based on the conventional Routh-Hurwitz (RH) criterion which is 

suitable to predict slow scale instability and cannot predict fast scale 

oscillation. This shortcoming is because of the elimination of the switching 

action from the circuit description and averaging the state variables over 

the switching period. The second approach is based on the use of the ripple 

component at the PWM modulator to predict sub-harmonic oscillations in 

DC-DC converters. It has been proved that, the ripple component at the 

PWM can be used to quantitatively predict fast scale oscillations in DC-DC 

power converters. 

 

 

 

Figure 9: Subharmonic oscillation due to a period doubling bifurcation 
after fast scale bifurcation kp=0.5, ωz≈33Mrad/s. 

 

(a) 

 

(b) 

Figure 10: (a) Bifurcation diagram of PWM controlled buck, ωz ≈ 14.28 
Mrab > ωc. (b) The evolution of fast scale instability index ρFs. 
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(a) 

 

(b) 

Figure 11: (a) Bifurcation diagram of PWM controlled buck, ωz ≈ 14.28 
Mrab > ωc. (b) The evolution of slow scale instability index ρss. 

5. CONCLUSION 

In this paper, stability analysis of dc-dc buck converter has been 

investigated using two different methods; the conventional Routh-Hurwitz 

(RH) criterion to predict slow scale instability and the use of the ripple 

component at the PWM modulator to predict sub-harmonic oscillations. It 

has been proved that, the ripple component at the PWM can be used to 

quantitatively predict fast scale oscillations in dc-dc power converters. 

Regardless of the parameter varying, if the ripple component at the PWM 

modulator exceeds a critical value, the system will show fast scale 

oscillation. By combining these two approaches it is possible to classify and 

categorise the design parameter space in different stability areas. 

Numerical and analytical evidence of validity of this approach in closed-

loop buck converter is presented. 
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